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Partial-Boundary Element Method for Analysis
of Striplines with Arbitrary Cross-Sectional
Dielectric in Multi-layered Media

Kazuhiko Atsuki, Member, IEEE, and Keren Li, Member, IEEE

Abstract—A new method of analysis called the partial-boundary
element method (p-BEM) is proposed for the analysis of striplines
with arbitrary cross-sectional dielectric in multi-layered media.
By using a Green’s function that satisfies the boundary conditions
of a relevant structure with multi-layered media and introducing
a concept of the equivalent charge density, the p-BEM formulates
a potential integral and boundary integral equations only on
partial-boundaries such as the surface of the arbitrary cross-
sectional dielectric. The number of the equations needed to be
formulated is much less than in the conventional BEM. Numerical

" results of analysis are presented for two kinds of striplines: 1)
with a rectangular dielectric ridge and 2) with an embedded
rectangular dielectric in three-layered media.

I. INTRODUCTION

HE increasing importance of miniature and integrated

microwave circuits in the recent years has renewed in-
terest on the microwave circuit designer in various microwave
systems such as mobile communications, etc. To meet the
strong demands of the low cost and high functions of mi-
crowave systems in commercial products, it has been proposed
that integrated -microwave circuits be monolithic (MMIC’s)
and multi-layered [1]. The MMIC’s involve -a number of
active devices and passive components and are fabricated on a
semiconductor wafer like GaAs. The advanced semiconductor
processing techniques employed in the manufacture of the
MMIC’s allow microwave circuits to have a complicated
cross-section of substrate and multi-layered media [1], [2],
[12]. Fig. 1 shows a structure, based on a practical waveguide
called Microslab™ and proposed for loss reduction of the
microstrip lines, which consists of a conducting strip on a
dielectric ridge placed on dielectric substrates [3]. Fig. 2 shows
a microstrip line embedding a different dielectric material
in the substrate under the conducting strip, the configuration
of which is similar to the structure of the FET device. As
illustrated, these structures consist of a rectangular cross-
sectional dielectric in multi-layered media, and one conducting
strip. :

For design purposes, it is necessary to know how the char-
acteristic impedance, propagating constant, and attenuation
constant of these transmission lines depend on geometrical
factors, on the properties of dielectric materials and conduc-
tors. For the analysis of these lines, however, several methods
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Fig. 1. Stripline with a rectangular dielectric ridge in three-layered media.
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Fig. 2. Stripline with an embedded rectangular dielectric in three-layered
media.

widely used in the analysis of microwave transmission lines,
such as the conformal mapping technique, the spectral domain
approach (SPA) [4] and the rectangular boundary division
method [5], are difficult to apply because of the complicated
cross-sections shown in Figs. 1 and 2. Two other widely used
numerical analysis methods, namely, the finite element method
(FEM) and the boundary element method (BEM) [6], [7], [11],
[12], are applicable to the analysis of these lines. The FEM is
easily applied to multi-layered media but does not easily treat
the field singularity existing at the edge of the conducting
strip. Furthermore, the FEM is not efficient for the analysis
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of open structures because it needs to treat the whole two-
dimensional region. Contrary to the FEM, the BEM [6], [8],
[11], [12] formulates an integral equation, not on the whole
region, but only on the boundaries of dielectric substrates
and on the surfaces of conductors. In addition, the BEM can
handle the singularity existing at the edges of the conducting
strip, and has no difficulty with open structure [6], [8]. In
a structure with multi-layered media, however, formulating
those integral equations on each boundary is complicated and
time-consuming. This difficulty arises because of the use of
a free-space Green’s function in the BEM, which do not
incorporate boundary conditions in the multi-layered media.

In this paper, we propose a new method of analysis which
we call the partial-boundary element method (p-BEM). It is
based on the quasi-TEM wave approximation, and its purpose
is to carry out a more efficient and effective analysis of
these transmission lines. This method introduces a concept of
equivalent charge density [9] and uses the Green’s function [7],
[10] of a structure related to the original one, in which some
dielectric region is replaced by other dielectric material. With
this method, the boundary integral equations are formulated
only on part of the boundaries, and therefore can avoid the
above mentioned complication with the BEM. As applications
of the p-BEM, we present an analysis of two kinds of
striplines: (1) with a rectangular dielectric ridge and (2) with
an embedded rectangular dielectric in three-layered media, as
shown in Figs. 1 and 2.

II. THE PARTIAL-BOUNDARY ELEMENT METHOD (p-BEM)

To describe the partial-boundary element method for the
analysis of the structures shown in Figs. 1 and 2, we take up
the structure of Fig. 1 as a model. It consists of a rectangular
dielectric ridge with conducting strip on it, and a two-layer
medium as substrate. The outer conductor is provided to cor-
respond to the conductor shielded transmission line structure
as well as for convenience of analysis. The dielectric materials
involved are assumed lossless and isotropic, with electric
parameters ,(¢z = 1, 2, 3, 4). Strip and outer conductors are
perfectly conducting. Physical dimensions are on the order of
pm as are typical in transmission lines used in MMIC’s [1],
[2].

Because an inhomogeneous dielectric system does not sup-
port the TEM mode along the transmission line, hybrid modes
are to be expected instead. To the structure shown in Fig. 1,
however, the quasi-TEM wave approximation can still be
effectively applied, since higher modes are difficult to excite
when the widths of dielectric ridge and conducting strip are
less than one half the operating microwave wavelength. For
this reason, we shall in this paper develop the p-BEM under
the quasi-TEM wave approximation [5], [8].

A. Principle of the p-BEM

Under the quasi-TEM wave approximation, the analysis of
the transmission line structure consists in finding an electro-
static solution to a two-dimensional boundary-value problem.
For the structure with a special cross-sectional analysis region
shown in Fig. 1, the boundary integral equation (BIE) tech-
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nique, for instance the BEM, is a suitable candidate for its
flexibility to accommodate the arbitrary boundary. The BIE
technique employs a Green’s function, and boundary integral
equations need to be formulated on boundaries where the
Green’s function does not satisfy their boundary conditions.
Therefore, the BEM should treat all boundaries, including the
boundaries of the dielectric ridge and the regular boundaries of
the multi-layered media and outer conductor. This treatment is
fairly complicated. On the other hand, if one can find a Green’s
function Gy(p|py) which satisfies all boundary conditions in
the structure, where p and p, denote position vectors for
observing point (z,y) and source point (zg,¥o), then by
replacing the strip conductor by a charge density distribution,
the potential function ¢(p) at any point in the cross-section
can be obtained by a boundary integral given by [7]

¢»= ¢ 00Godl, 6))

To

where T'y is an integral circumference around the surface
of the strip conductor, and oo(p,) is the charge density
distribution on the surface. Once this integral expression of
the potential is derived, the boundary integral equations can
be easily formulated by following the procedure of the BIE
technique. However, the difficulty in using (1) is to obtain
the Green’s function that satisfies all boundary conditions of
the transmission line structure under consideration. For the
structure shown in Fig. 1, it is obviously impractical because
of the complexity of the boundary around the interface of the
dielectric ridge, though the remaining boundaries are regular.
For such a structure, it is advantageous to use the p-BEM, as
presently described.

Consider the structure shown in Fig. 3, which is related to
the original configuration shown in Fig. 1. This structure is
defined by removing the rectangular cross-sectional dielectric
ridge and the conducting strip. By setting up rectangular
coordinates, and assuming that we have obtained the Green’s
function G'(p|p,) which satisfies all boundary conditions in the
structure shown in Fig. 3, we can then express the potential
function ¢(p) at any point in the cross-section of the original
structure as

¢= oG dT, )

To+T,

where T', is an integral circumference around the surface
of the dielectric ridge and o(p,) is the equivalent charge
density distribution on I'y and I'y,. The quantity o is introduced
and defined in Appendix. Equation (2) is the most important
formula in this paper and its proof is given in detail in
Appendix for a generalized two-dimensional boundary value
problem. It should be noticed that the difference between the
potential integral expressions in (1) and (2) is the addition of an
integral around the interface of the dielectric ridge. Comparing
with the conventional BEM, we need to treat only the “partial-
boundary” instead of all boundaries in the structure under
consideration. In this sense we call the integral expression of
the potential in (2) a “partial-boundary integral” and name our
method as “‘partial-boundary element method (p-BEM)”. The
procedure for the derivation of boundary integral equations
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Fig. 3. Shielded structure with three dielectric layers.

from (2) is similar to that in the conventional BIE technique
and is described in the following.

B. Green’s Function in the Structure
with Three-Layered Media

To formulate the boundary integral equations from the
partial-boundary integral in (2), we must first find the Green’s
function. For the structure with multi-layered media as shown
in Fig. 3, two techniques are usually employed to derive the
Green’s function. One is the image method, which uses single
or multi infinite series of image charges to satisfy the boundary
conditions on the interfaces of the layered media [7]. The
other is the Fourier expanding or transformation technique in
which a solution is obtained in the form of Fourier series or
integral. In both cases, we can obtain the Green’s function
analytically. For the structure with the shielded conductor,
the image charges are distributed in two-dimensional space
and thus make the boundary integrals very complicated. In
contrast, the Fourier expanding technique can be easily adapted
to fit any number of layers. We use the Fourier expanding
technique in the present paper. The Green’s function in the
third region which satisfies all boundary conditions in the
structure shown in Fig. 3 is given by [10] where

A, (y) =eg9egsinh aphq sinh aphs sinh any
+ eqe3sinh a, ki cosh aphg cosh any
+ £3e1 cosh by sinh a,ho cosh ayy

+ g1£9 cosh a,hy cosh o, he sinh apy
nw
Oy = —
a

Here we assumed the line source is at (wg,yo) in the third
region, too.
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Fig. 4. Rectangular dielectric ridge and its boundaries.

C. Formulation of the Partial-Boundary Integral Equations

For convenience of derivation, we enlarge the part of the
rectangular dielectric ridge and illustrate it again in Fig. 4.
The boundary consists of one conductor surface I'g to which
a voltage V; is applied, and three dielectric interfaces denoted
as I'y, Ty, T's, respectively, and I', = I'y +T's + I'3. Moving
the observing point to the boundaries, we obtain two kinds
of boundary integral equations from (2) and the boundary
conditions as follows.

On the perfectly conducting strip, we have

f 0G33(p|p0) dl' = V(), on Fo, (41)
To+4T,

and on the dielectric interfaces, we have

+
537{ UM dT
F0+Fp 3

n
— ey ;0GP 1P0) yr LT and T,
To+T, n
4.2)
+
ezf U___anségﬂ L) dl’
Do+4Ty n
. G -
=e4 7{ agﬁéﬂi’“—) dr', onTh,. 4.3)
Do+T, n

where Go3 is a Green’s function in region 2 created by the
source in region 3, and satisfies following boundary equation:

+ _
_5286‘23(;) o) +833G33(P lpo) _5

— Ts.
B o (p—py) onl:

(&)

The quantities p™ and p~ denote the position vectors of
the observing point infinitely close to the position p on the
boundary T',, but slightly outside (4 sign) and inside (- sign)
the dielectric region 4, respectively.

Ay (y)sinh apn(hs — yo)

- 8in O, o SIN A, T,

An(h3)
Ay (yo) sinh o (hs — y)

- §in @, Lo SIN T,

An(hs)

0<y<y,0<z<a
3)
Yyo<y<h30<xz<a
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D. Treatment of the Singularity of Green’s
Function in the Boundary Integrals

Before calculating the integrals in the above equations
numerically on a computer, we have to treat the singularity
in the Green’s function in (4.2) and (4.3) since the singularity
can lead to a serious computation error. Referring to Fig. 4, the
Green’s function, denoted as G, which satisfies the boundary
conditions can be rewritten as a logarithmic function when
the observing point is close enough to the source point, and
is given as

1

when |p — pg| — 0, (6.1)
2mey

Gp(plpy) = In |p — pyl,

where

onI'y and I'3

on Ty , (6.2)

_ €3,
T (ea+es)/2,

and

lp— pol = V/(z — 30)2 + (y — %0)2.

The integral of the normal derivative of the function
—(127)In|p ~ py| over an infinitesimal smooth boundary
integral region where |p — py| — 0 gives a finite value —1/2
for the outside observing point p™ and +1/2 for the inside
point p~. Applying this treatment into (4.2) and (4.3), and
substituting (5) to (4.3), we can rewrite the integrals after
extracting the singularity part as follows:

oG
mo—l—(q—sg)j{ o—=22 qI =0,
2e3 4T, ¢ (ay) 0N
onI'y and I's, (7.1
oG
€4+€20+(€4—52)j1§ o— 2 4T =0,
€3+ €2 Lo+l (zy)  OP
on I's, (7.2)

where position vectors slightly outside and inside region 4
coalesce into the position vector on the boundary I',,. and are
omitted for simplicity. On the other hand, the singularity in
(4.1) needs not be treated since the integral of the logarithmic
function in (6) over a infinitely small integral region vanishes,
so that it will not lead to a significant error in computation.

E. Boundary Discretization of the Partial-Boundary
Integral Equations

After the singular parts having been removed, the partial-
boundary integral (4.1), (7.1). and (7.2) can be solved by
boundary discretization as usually done in the BEM [6],
[8]-[10]. By setting up a local coordinate ¢ along the bound-
ary, we can express the equivalent boundary charge density
distribution o as

g = Zazfi(g) (8)
=1

where m is the total number of the boundary elements, and
fi(&)is an interpolating function on the sth boundary element.
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The most simple interpolating function f,(£) is the step
function defined by

1, on the ¢th element

Fi(&) = {O, elsewise. ©)

Substituting (8) and (9) into the partial-boundary integral (4),
we get a series of simultaneous equations for o, as

H-o=V (10.1)
0-:(0-190'27"'90'm)T (10.2)
V=o,Vo, -, V,0,---,0)T (10.3)

——
my my

where m = mg +myp, mg is the number of boundary elements
on the strip conductor, m, is the number of boundary cle-
ments on dielectric interfaces, and H is a coefficient matrix
associated with the Green’s function and the boundary integral
equations on each element.

After finding the equivalent boundary charge density distri-
bution ¢ by solving the simultancous (10) on a computer, we
can easily obtain the true charge density distribution as dis-
cussed in the Appendix. The transmission line characteristics
can then be calculated through the line capacitance per unit
length, which is the integral of the charge density distribution
over the surface of the strip conductor [5], [9], [10].

IIT. NUMERICAL RESULTS FOR TWO STRIPLINES

As an illustration of the p-BEM, we present two sets of
numerical results for the two striplines shown in Figs. 1 and
2.

First we analyze the stripline with a rectangular dielectric
ridge in three-layered media. The associated geometrical and
dielectric parameters are as follows: a/b = 2.0, hy /b = 0.4,
ha/b=02, hg/b=04,e1 = 1.0, &5 = 10.0, €3 = 1.0.

To verify the accuracy of the numerical results, the con-
vergence of the characteristic impedance and the effective
dielectric constant versus both the number of Fourier terms
N for the Green’s function in (3), shown at the bottom of
the previous page, and the number of the elements mg on the
strip conductor, is investigated first. The numerical results of
the convergence are shown in Fig. 5(a) and (b). These results
demonstrate that to get a relative error less than 1% in both the
characteristic impedance and the effective dielectric constant,
the number of Fourier terms N must be greater than about
3000, and the number of elements on the strip conductor
mg >15. All numerical results shown subsequently in this
paper are calculated with N = 4000 and mg = 20 or more.
The number of elements on the dielectric interface is set at
my, = 30 or more.

Fig. 6 shows the characteristic impedance and the effective
dielectric constant versus the normalized width d/b of the
dielectric ridge with dielectric constant £4 as parameter.

Fig. 7(a) and (b) show the characteristic impedance and the
effective dielectric constant versus the normalized height 4 /b
of the dielectric ridge, with the normalized width w /b of strip
conductor as parameter.

Next we analyze the stripline with an embedded rectangular
dielectric in three-layered media. The associated geometrical
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Fig. 5. Convergence of numerical results for characteristic impedance and
effective dielectric constant versus (a) the number of Fourier terms /V and (b)
the number of elements on strip conductor myg.
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Fig. 6. Characteristic impedance and effective dielectric constant versus
normalized width d/b of dielectric ridge, with dielectric constant £4 ‘as
parameter.

and dielectric parameters are as follows:a/b = 2.0, h1/b =
0.2, ha/b= 04, h3/b =04, 1 = 1.0, 2 = 10.0, &3 = 1.0.

Fig. 8 shows the normalized charge density distribution on
the strip. For the case w<d, a relatively small dielectric
constant 4 < 9 gives a weak charge density on the strip, while
for the case of w > d, a relatively large ¢4 > 9 gives the same
result. Therefore, the charge density on the strip conductor can
be controlled by the embedded dielectric constant e4. A weak
~ charge density associates with low loss of the stripline.

Fig. 9(a) and (b) show the characteristic impedance and
the effective dielectric constant versus the normalized width
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Fig. 7. (a) Characteristic impedance and (b) effective dielectric constant
versus normalized height & /b of dielectric ridge, with normalized width w/b
of strip conductor as parameter.
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Fig. 8. Normalized charge density distribution on strip conductor.

d /b of the embedded dielectric, with dielectric constant ¢4 as
parameter. These results demonstrate that either when w <d,
or when w > d, the characteristics are almost flat, while for
d close to w, the characteristics vary sharply. This is due
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versus normalized width d/b of embedded dielectric, with dielectric constant
£4 as parameter.

to the fact that when d approaches w, the presence of the
embedded dielectric strongly affects the charge density on the
strip conductor.

Fig. 10(a) and (b) show the characteristic impedance and
the effective dielectric constant versus the normalized depth
h/b of the embedded dielectric with dielectric constant &4 as
parameter.

It took about 10 seconds of CPU time to calculate one set of
the characteristic data on a workstation SUN SPARCstation 2.

IV. DISCUSSIONS ON p-BEM

It should be noted that the formulation of the boundary
integral equations in Section II does not require that the
dielectric ridge be rectangular, though we used the rectangular
structure as a model. Indeed, we have proved the partial-
boundary integral for a general configuration in the Appendix,
so the formulation can be applied to an arbitrary cross-
sectional dielectric ridge, and the p-BEM can be employed
for the analysis of such structure.

As an extension to the boundary integral equation (BIE)
technique, the p-BEM provides a mean of formulating the
BIE's and selecting the Green’s function. The discretization
of the formulated BIEs is done in a similar fashion as with the
BEM. The p-BEM can also be considered as an extension of
the BEM from the point of view of introducing the concept of
the equivalent charge density and using the Green’s function
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Fig. 10. (a) Characteristic impedance and (b) effective dielectric constant
versus normalized depth £ /b of embedded dielectric, with dielectric constant
£4 as parameter.

of a structure related to the original one. The most important
merit of the p-BEM is that it provides a straight forward
and optimum approach to formulate the BIE’s in a boundary
value problem, the BIE’s being formulated only on the partial-
boundaries. This point is particularly useful in the analysis
of striplines with arbitrary cross-sectional dielectric in multi-
layered media. The comparison between the p-BEM and the
BEM is given in Table 1.

V. CONCLUSION

In this paper, a new method of analysis called the partial-
boundary element method (p-BEM), has been proposed for the
analysis of striplines with arbitrary cross-sectional dielectric
in multi-layered media. In the p-BEM, the boundary integral
equations can be formulated only on the surfaces of the strip
conductor(s) and the boundaries of the arbitrary cross-sectional
dielectric. The merit of this method is that the number of
boundaries to treat is small compared with the conventional
boundary integral equation methods such as the BEM in
which the Green’s function in free space is usually employed.
Striplines: (1) with a rectangular dielectric ridge and (2) with
an embedded rectangular dielectric in multi-layered media are
characterized in this paper as applications of the p-BEM. The
numerical results present many significant aspects of these
lines, and show the effectiveness of the p-BEM.
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TABLE 1
CoMpaRISON BETWEEN BEM anp p-BEM
Comparison Term BEMI®] p-BEM
Green's function used Green's function in ;‘;:;;;u:ﬂg_
in formulation free-space boundary conditions
degree of difficulty to e comparatively
obtain Green's function asy complicated
boundaries to be )
treated all part
formulation of
boundary integral complicated straight forward
equations
. equivalent boundary
boundary variables potential, !:Joundary density distribution
used in formulation charge density or both only
. L using interpolate using interpolate
boundary discretization function function
treatment of singularity necessary necessary
applicability to
boundary value wide comparatively wide
problem
simple
applicability to multi-
media (i.e. multi- complicated by sel.eimég an.
boundaries) problem appropriate Green's
function)
extension to 3-
dimensional problem possible and easy possible and easy
extension to full wave possible and possible but may be
analysis comparatively easy difficult
applicable to all
strong point problems with one fon::jl:lt_jt(::u?lr;ly on
Green's function p ary
: . have to find a specific
weak point comp hc:‘ited for multi Green's function for a
media problem
specific problem
when selecting Green's function in free-space, the
. . p-BEM is similar to the indirect BEM, but builds
identity of p-BEM up the boundary integral equations in a more
straight forward way.

APPENDIX
DERIVATION OF THE PARTIAL-BOUNDARY INTEGRAL

Consider a two-dimensional static electric boundary value
problem as shown in Fig. A-1. The problem consists of one
inner conductor with an applied voltage V and three dielectric
regions with electric parameters ¢;(¢ = 1, 2, 3) surrounded by
shield conductor as seen in Fig. A-1. The inner conductor
is denoted by a closed curve I'g, and the three regions are
denoted S;( = 1, 2, 3), surrounded respectively by three
closed curves I';(# = 1, 2, 3) in the zy plane, respectively.
The dielectric materials involved in this structure are assumed
lossless and isotropic, and the inner and outer conductors are
perfectly conducting.

Denoting the potentials for the static electric field in the
three regions by ¢;(z,y) (G = 1, 2, 3), we have Laplace’s
equation as follows:

V2¢i(.’17, y) =0,

where V2 = 8%/822 + 8%/0y*.

To solve for the potentials in each region, the boundary
integral equation technique is useful but a Green’s function
that satisfies all boundary conditions in the structure in Fig.
A-1 is difficult to find. To avoid the difficulty, let us consider
another Green’s function that satisfies all boundary conditions
not in the structure in Fig. A-1 but in a structure related to it
as shown in Fig. A-2. We assume that this Green’s function is
easier to find than the original one. The relevant structure, as

(x,y) €8, =123, (Al
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Fig. A-1. Two-dimensional boundary problem of static electric field in three
dielectric regions. :

line charge o
X0, Yo)
”~ -~

Fig. A-2. An associated two-dimensional boundary problem of static electric
field, with €2 replaced by e3.

illustrated in Fig. A-2, is made up by replacing the e, dielectric
regions S with e3 dielectric region, and removing the inner
conductor in Fig. A-1.

In Fig. A-2, assuming that the Green’s functions due to a
line charge located at an arbitrary point (zg, yo) in the region
Sy or Sy is denoted as G13(x,y) in region S; and Gas(z,y)
in region Sy and Ss, respectively, then we have

V2Gis(z,yleo, o) =0,  (z,y) € 51, (A2)
1
V2Gas(z,ylzo, y0) = — ;35(37 ~ 0,y — Y0),
(z,y) € S3or Se.  (A3)

These Green’s functions G153 and Gz are assumed to satisfy
all boundary conditions in the relevant structure in Fig. A-
2. Thus we have the following boundary conditions for the
potential functions ¢1(z,y),¢2(z,y) and ¢3(x,y) and the
Green’s functions G13 and Gg3s:

¢3 =Vo, only, (A4.1)
Oy O3
= 901 _ ¢, %08 42
$1=¢3, €1 5 = B, OO 'y, (A42)
J 15]
b =3, e 8";2 = eagi, onTy,  (A43)
(]53 = 0, on Pg, (A44)
and
0 oG
G113 =Gs3, 81—G~li —es—2 only, (AS.D)
on 1%}
Gs33 =0, onlg (A5.2)
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Applying Green’s second integral theorem
0
/ (pV3G — GV?$) ds :f (¢— - G8¢) dl' (A.6)
5

to region S7, we have

// ($1V?G1s — G13V2¢1) dsy
S1

oG Jd1
7{ (¢1 =~ Gy ;5 ) dr. (A7)
Ty
Substituting (A.1) and (A.2) into this equation gives
—elf <¢1 0Cs _ 90 ) dr = 0. (A.8)
ry on
Working similar way with region S, we have
[ 2526 - Guav2a) a5
7]
= // <¢za§33 - G33—?3> dar  (A9)
n on
Iz

and substituting (A.1) and (A.3) into this equation gives

oG 53]
—Eaj{ <¢2 3 Qg2 b2 ) dr
T, n (9

0
_ {¢27 ($O,y0) € SQ
o 07 (anyO) ¢S2

(A.10)

In region S3, we have

/‘ (p3V2Gs3 — G33V2¢3) ds

j{ (¢3 s _ 3;53) dr, (A1)

where I'y = I's — Iy — I'y — I'g. Expanding the right-hand
term of this equation as

%g:%rg_jgl_fz_ﬁo

and substituting (A.4), (A.5) and (A.8) into (A.12) gives

(A.12)

}{ =0, j{ =0, (A.13)
T, Ty
and
9
¢3 aG‘B dr' =V, f Y3 r— g (A.14)
Ty an

because no net electric flux remains in the region enclosed
by Fo.
Therefore (A.11) can be rewritten as

5} oG: d
- 637{ Gi33 3¢3 dr' + 3% (¢3 3 Gl ;3) dr’
To

— {¢3’
0,

(xoa yO) S SS

(ro.y0) & S~ (A-15)
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Combining (A.10) and (A.15) in regions Sy and Ss, respec-
tively, we have
) ar

¢2 = \f}: G33 (_53 aa¢

+% G33 83%— 38¢3 dF, (A16)
T, 8TL 871

¢3 ng G (—63%> dr

0
+7§ Gas (83 a¢3 ~ 83ﬁ) dr’. (A.17)
T, on on
Defining o as

—63%, on F(]
o= n , (A.18)

[0 99,

0 7]

we can then express the potentials in regions S5 and S3 simply

as follows:
Po,3 = j{ oGas dl.
Ty+I2

On the other hand, to find the potential function in region S,
the line charge (o, yo) must be moved into the region. When
the source is at (g, yo) in region S1, we have

(A.19)

1
V2G11(z,y|7o, y0) = *55(33 — 0,y — Yo),
(l’,y) € Sla

("an) € S3'

(A.20)

V2Gs1(z, ylzo, yo) =0, (A21)

Applying Green’s second integral theorem to the region S;
and using the boundary conditions for G; and G3; as shown
in (A.5) for G153 and (33, and following the procedures used
previously to the region S3, we can get

$1 =7€ Ga1 (“&5%) dr

+f Gt <eg% —53%> . (A.22)
T, 871 Bn
We have

Gs1 = G, (A.23)

from the symmetry of Green’s functions between the source
point (xo,yo) and the observing point (z,y). Using the
variable ¢ defined in (A.18), the potential in region S; can
then be expressed as

¢1 = f O'G13 dl’.
To+TI2

Now by putting together the integrals in (A.19) and (A.24), we
can express the potential in each region in the two-dimensional
problem in Fig. A-1 in a unified way as

(A.24)

b= oG dTl.
To+D2

(A.25)

This integral for potentials is called the “partial-boundary
integral” in this paper, in contrast to the conventional boundary
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integral equation in which the integrals for the potential must
be taken over all boundaries in Fig. A-1.

The variable o defined in (A.18) has units of charge density.
In some cases, it is just the true charge density. In general,
however, ¢ is an equivalent charge density distribution on the
partial-boundary without physical significance and just defined
as in (A.18). The true charge density on the conductor surface
Ty can be obtained by simply multiplying o with a constant
associated with the dielectric constants.

We note that by following the above procedure, the partial-
boundary integral in (A.25) can easily be obtained for more
dielectric regions than in Fig. A-1. For example, we can
divide region 1 into two regions, provided the Green’s function
used in (A.25) satisfies the corresponding additional boundary
conditions.
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