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Partial-Boundary Element Method for Analysis

of Striplines with Arbitrary Cross-Sectional

Dielectric in Multi-layered Media
Kazuhiko Atsuki, Member, IEEE, and Keren Li, Member, IEEE

AbstractA new method of analysis called the partial-boundary

element method (p-BEM) is proposed for the analysis of striplines

with arbitrary cross-sectional dielectric in multi-layered media.
By using a Green’s function that satisfies the boundary conditions

of a relevant structure with multi-layered media and introducing
a concept of the equivalent charge density, the p-BEM formulates
a potential integral and boundary integral equations only on
partial-boundaries such as the surface of the arbitrary cross-

sectional dielectric. The number of the equations needed to be

formulated is much less than in the conventional BEM. Numerical

results of analysis are presented for two kinds of striplines: 1)

with a rectangular dielectric ridge and 2) with an embedded

rectangular dielectric in three-layered media.

I. INTRODUCTION

T HEincreasing importance of miniature and integrated

microwave circuits in the recent years has renewed in-

terest on the microwave circuit designer in various microwave

systems such as mobile communications, etc. To meet the

strong demands of the low cost and high functions of mi-

crowave systems in commercial products, it has been proposed

that integrated microwave circuits be monolithic (MMIC’s)

and multi-layered [1]. The MMIC’s involve a number of

active devices and passive components and are fabricated on a

semiconductor wafer like GaAs. The advanced semiconductor

processing techniques employed in the manufacture of the

MMIC’S allow microwave circuits to have a complicated

cross-section of substrate and multi-layered media [1], [2],

[12]. Fig. 1 shows a structure, based on a practical waveguide

called MicroslabTM and proposed for loss reduction of the

microstrip lines, which consists of a conducting strip on a

dielectric ridge placed on dielectric substrates [3]. Fig. 2 shows

a microstrip line embedding a different dielectric material

in the substrate under the conducting strip, the configuration

of which is similar to the structure of the FET device. As

illustrated, these structures consist of a rectangular cross-

sectional dielectric in multi-layered media, and one conducting

strip.

For design purposes, it is necessary to know how the char-

acteristic impedance, propagating constant, and attenuation

constant of these transmission lines depend on geometrical

factors, on the properties of dielectric materials and conduc-

tors. For the analysis of these lines, however, several methods
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Fig, 1. Stripline with a rectangular dielectric ridge in three-layered media.

Fig. 2. Stripline with an embedded rectangular dielectric in three-layered

media.

widely used in the analysis of microwave transmission lines,

such as the conformal mapping technique, the spectral domain

approach (SPA) [4] and the rectangular boundary division

method [5], are difficult to apply because of the complicated

cross-sections shown in Figs. 1 and 2. Two other widely used

numerical analysis methods, namely, the finite element method

(FEM) and the boundary element method (BEM) [6], [7], [1 1],

[12], are applicable to the analysis of these lines. The FEM is

easily applied to multi-layered media but does not easily treat

the field singularity existing at the edge of the conducting

strip. Furthermore, the FEM is not efficient for the analysis
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of open structures because it needs to treat the whole two-

dimensional region. Contrary to the FEM, the BEM [6], [8],

[1 1], [12] formulates an integral equation, not on the whole

region, but only on the boundaries of dielectric substrates

and on the surfaces of conductors. In addition, the BEM can

handle the singularity existing at the edges of the conducting

strip, and has no difficulty with open structure [6], [8]. In

a structure with multi-layered media, however, formulating

those integral equations on each boundary is complicated and

time-consuming. This difficulty arises because of the use of

a free-space Green’s function in the BEM, which do not

incorporate boundary conditions in the multi-layered media.

In this paper, we propose a new method of analysis which

we call the partial-boundary element method (j-BE M).It is

based on the quasi-TEM wave approximation, and its purpose

is to czrrry out a more efficient and effective analysis of

these transmission lines. This method introduces a concept of

equivalent charge density [9] and uses the Green’s function [7],

[10] of a structure related to the original one, in which some

dielectric region is replaced by other dielectric material. With

this method, the boundary integral equations are formulated

only on part of the boundaries, and therefore can avoid the

above mentioned complication with the BEM. As applications

of the p-BEM, we present an analysis of two kinds of

striplines: (1) with a rectangular dielectric ridge and (2) with

an embedded rectangular dielectric in three-layered media, as

shown in Figs. 1 and 2.

II. THE PARTIAL-BOUNDARY ELEMENT METHOD (p-BEM)

To describe the partial-boundary element method for the

analysis of the structures shown in Figs. 1 and 2, we take up

the structure of Fig. 1 as a model. It consists of a rectangular

dielectric ridge with conducting strip on it, and a two-layer

medium as substrate. The outer conductor is provided to cor-

respond to the conductor shielded transmission line structure

as well as for convenience of analysis. The dielectric materials

involved are assumed lossless and isotropic, with electric

parameters s,(i = 1, 2, 3, 4). Strip and outer conductors are

perfectly conducting. Physical dimensions are on the order of

~m as are typical in transmission lines used in MMIC’S [1],

[2].

Because an inhomogeneous dielectric system does not sup-

port the TEM mode along the transmission line, hybrid modes

are to be expected instead. To the structure shown in Fig. 1,

however, the quasi-TEM wave approximation cau still be

effectively applied, since higher modes are difficult to excite

when the widths of dielectric ridge and conducting strip are

less than one half the operating microwave wavelength. For

this reason, we shall in this paper develop the p-BEM under

the quasi-TEM wave approximation [5], [8].

A. Principle of the p-BEM

Under the quasi-TEM wave approximation, the analysis of

the transmission line structure consists in finding an electro-

static solution to a two-dimensional boundary-value problem.

For the structure with a special cross-sectional analysis region

shown in Fig. 1, the boundary integral equation (BIE) tech-

nique, for instance the BEM, is a suitable candidate for its

flexibility to accommodate the arbitrary boundary. The BIE

technique employs a Green’s function, and boundary integral

equations need to be formulated on boundaries where the

Green’s function does not satisfy their boundary conditions.

Therefore, the BEM should treat all boundaries, including the

boundaries of the dielectric ridge and the regular boundaries of

the multi-layered media and outer conductor. This treatment is

fairly complicated. On the other hand, if one can find a Green’s

function Go (plpo) which satisfies all boundary conditions in

the structure, where p and p. denote position vectors for

observing point (x, g) and source point (XO, y. ), then by

replacing the strip conductor by a charge density distribution,

the potential function @(p) at any point in the cross-section

can be obtained by a boundary integral given by [7]

@=
!

O. GO dr, (1)
r~

where I’. is an integral circumference around the surface

of the strip conductor, and a. (p. ) is the charge density

distribution on the surface. Once this integral expression of

the potential is derived, the boundary integral equations can

be easily formulated by following the procedure of the BIE

technique. However, the difficulty in using (1) is to obtain

the Green’s function that satisfies all boundary conditions of

the transmission line structure under consideration. For the

structure shown in Fig. 1, it is obviously impractical because

of the complexity of the boundary around the interface of the

dielectric ridge, though the remaining boundaries are regular.

For such a structure, it is advantageous to use the p-BEM, as

presently described.

Consider the structure shown in Fig. 3, which is related to

the original configuration shown in Fig. 1. This structure is

defined by removing the rectangular cross-sectional dielectric

ridge and the conducting strip. By setting up rectangular

coordinates, and assuming that we have obtained the Green’s

function G(plpo) which satisfies all boundary conditions in the

structure shown in Fig. 3, we can then express the potential

function ~(p) at any point in the cross-section of the original

structure as

Jro+r,

where rP is an integral circumference around the surface

of the dielectric ridge and O(po ) is the equivalent charge

density distribution on r. and rP. The quantity u is introduced

and defined in Appendix. Equation (2) is the most important

formula in this paper and its proof is given in detail in

Appendix for a generalized two-dimensional boundary value

problem. It should be noticed that the difference between the

potential integral expressions in(1) and (2) is the addition of an

integral around the interface of the dielectric ridge. Comparing

with the conventional BEM, we need to treat only the “partial-

boundary” instead of all boundaries in the structure under

consideration. In this sense we call the integral expression of

the potential in (2) a “partial-boundary integral” and name our

method as “partial-boundary element method @-BEM)”. The

procedure for the derivation of boundary integral equations
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Fig. 3. Shielded structure with three dielectric layers.

from (2) is similar to that intheconventional BIE technique

and is described in the following.

B. Green’s Function in the Structure

with Three -Layered Media

To formulate the boundary integral equations from the

partial-boundary integral in (2), we must first find the Green’s

function. For the structure with multi-layered media as shown

in Fig. 3, two techniques are usually employed to derive the

Green’s function. One is the image method, which uses single

or multi infinite series of image charges to satisfy the boundary

conditions on the interfaces of the layered media [7]. The

other is the Fourier expanding or transformation technique in

which a solution is obtained in the form of Fourier series or

integral. In both cases, we can obtain the Green’s function

analytically. For the structure with the shielded conductor,

the image charges are distributed in two-dimensional space

and thus make the boundary integrals very complicated. In

contrast, the Fourier expanding technique can be easily adapted

to fit any number of layers. We use the Fourier expanding

technique in the present paper. The Green’s function in the

third region which satisfies all boundary conditions in the

structure shown in Fig. 3 is given by [10] where

An(y) = e2~2 sinh anhl sinh a.h2 sinh any

+ E2E3 sinh anhl cosh anhz cosh Q~Y

+ E3E1 cosh a~hl sinh anhz cosh any

+ S1S2cosh anhl cosh a.h2 sinh a%y
n7r

a—~=
a

Here we assumed the line source is at (z., yo) in the third

region, too.

Fig. 4. Rectangular dielectric ridge and its boundaries.

C. Formulation of the Partial-Boundary Integral Equations

For convenience of derivation, we enlarge the part of the

rectangular dielectric ridge and illustrate it again in Fig. 4.

The boundary consists of one conductor surface r. to which

a voltage VO is applied, and three dielectric interfaces denoted

as 171,17z,rs, respectively, and 17P= I’1 + rz + rg. Moving

the observing point to the boundaries, we obtain two kinds

of boundary integral equations from (2) and the boundary

conditions as follows.

On the perfectly conducting strip, we have

! @33(plpo) dr = Vo, on ro, (4.1)
rO+rP

and on the dielectric interfaces, we have

(4.2)

! ~G33(P-IPO) ~r,
= E4 t7

dn
on r2. (4.3)

rO+rP

where G23 is a Green’s function in region 2 created by the

source in region 3, and satisfies following boundary equation:

The quantities p+ and p- denote the position vectors of

the observing point infinitely close to the position p on the

boundary rP but slightly outside (+ sign) and inside (– sign)

the dielectric region 4, respectively.

‘{
An(y) sinh am(hg – yo) . sin ~nzo sin ~nz,

G33=~~
A~(hg)

~=1 n7rE3 An(yo) sinh a~(hs – y) . sin ~nzo sin ~nz,

An(h3)
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D. Treatment of the Singularity of Green’s

Function in the Bounda~ Integrals

Before calculating the integrals in the above equations

numerically on a computer, we have to treat the singularity

in the Green’s function in (4.2) and (4.3) since the singularity

can lead to a serious computation error. Referring to Fig. 4, the

Green’s function, denoted as GP, which satisfies the boundary

conditions can be rewritten as a logarithmic function when

the observing point is close enough to the

is given as

Gp(plpo) = + in 1P– pOl, when Ip
P

source point, and

–pOl ~0, (6.1)

where

{

on 171 and r3

‘p = ~~1 -i- E3)/2, On r~ ‘
(6.2)

and

IP-POI = l/($ -~o)2+(Y-Yo)2.

The integral of the normal derivative of the function

–(1/27r) in Ip – p.\ over an infinitesimal smooth bounda~

integral region where Ip – p. I ~ O gives a finite value – 1/2

for the outside observing point p+ and +1/2 for the inside

point p–. Applying this treatment into (4.2) and (4.3), and

substituting (5) to (4.3), we can rewrite the integrals after

extracting the singularity part as follows:

&q + E3

!

i3G33
—0 + (&~ – E3)

ZE3
—dr=o,

ro+rpck,y)
g th

ou rl and 1’3, (7.1)

&4 + E2

/

8G33
~~+ (S4 – E2) —dr=o,

rO+rPg(~,YJ o tk,

on r2, (7.2)

where position vectors slightly outside and inside region 4

coalesce into the position vector on the boundary rP, and are

omitted for simplicity. On the other hand, the singularity in

(4. 1) needs not be treated since the integral of the logarithmic

function in (6) over a infinitely small integral region vanishes,

so that it will not lead to a significant error in computation.

E. Boundary Discretization of the Partial-Boundary

Integral Equations

After the singular parts having been removed, the partial-

boundary integral (4. 1), (7. 1), and (7.2) can be solved by

boundary discretization as usually done in the BEM [6],

[8]-[10]. By setting up a local coordinate & along the bound-

ary, we can express the equivalent boundary charge density

distribution a as

where m is the total number of the bound~ elements, and

fi (~)is an interpolating function on the ith boundary element.

The most simple interpolating function f,(f) is the step

function defined by

1, on the ith element
f,(t) = { (j, elsewise. (9)

Substituting (8) and (9) into the partial-boundary integral (4),

we get a series of simultaneous equations for 0, as

H.n=V (10.1)

CJ=(01,CJ2, . . , am )T (10.2)

V=(vo, vo,.. .,vo, o,..., O)T (10.3)
~~

mo mp

where m = m. + mP, m. is the number of boundary elements

on the strip conductor, mP is the number of boundary ele-

ments on dielectric interfaces, and II is a coefficient matrix

associated with the Green’s function and the boundary integral

equations on each element.

After finding the equivalent boundary charge density distri-

bution o by solving the simultaneous (10) on a computer, we

can easily obtain the true charge density distribution as dis-

cussed in the Appendix. The transmission line characteristics

can then be calculated through the line capacitance per unit

length, which is the integral of the charge density distribution

over the surface of the strip conductor [5], [9], [10].

III. NUMERICAL RESULTS FOR Two STRIPLINES

As an illustration of the p-BEM, we present two sets of

numerical results for the two striplines shown in Figs. 1 and

2.

First we analyze the stripline with a rectangular dielectric

ridge in three-layered media. The associated geometrical and

dielectric parameters are as follows: a/b = 2.0, hl /b = 0.4,

h2/b = 0.2, h3/b = 0.4, E-l = 1.0, =2 = 10.0, E3 = 1.0.

To verify the accuracy of the numerical results, the con-

vergence of the characteristic impedance and the effective

dielectric constant versus both the number of Fourier terms

IV for the Green’s function in (3), shown at the bottom of

the previous page, and the number of the elements m. on the

strip conductor, is investigated first. The numerical results of

the convergence are shown in Fig. 5(a) and (b). These results

demonstrate that to get a relative error less than 1% in both the

characteristic impedance and the effective dielectric constant,

the number of Fourier terms iV must be greater than about

3000, and the number of elements on the strip conductor
m. >15. All numerical results shown subsequently in this

paper are calculated with IV = 4000 and m. = 20 or more.

The number of elements on the dielectric interface is set at

mP = 30 or more.

Fig. 6 shows the characteristic impedance and the effective

dielectric constant versus the normalized width d/b of the

dielectric ridge with dielectric constant Z4 as parameter.

Fig. 7(a) and (b) show the characteristic impedance and the

effective dielectric constant versus the normalized height h/b

of the dielectric ridge, with the normalized width w/b of strip

conductor as parameter.

Next we analyze the stripline with an embedded rectangular

dielectric in three-layered media. The associated geometrical
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Fig. 5. Convergence of numerical results for characteristic impedance and

effective dielectric constant versus (a) the number of Fourier terms N and (b)
the number of elements on strip conductor no.

0.125 0.175 0.225 0.275 0.325

If/%

(b)

Fig. 7. (a) Characteristic impedance and (b) effective dielectric constant

versus formalized height h/b of dielectric ridge, with normalized width w/b

of strip conductor as parameter.
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F1g.6. Characteristic impedance and effective dielectric constant

normalized width d/b of dielectric ridge, with dielectric constant
parameter.

versus

C4 as

and dielectric parameters are as follows: a/b = 2.0, hi/b ==

0.2, hz/b=O.a, h3/b=0.Q, EI= 1.0,52= 10.0, e3= 1.0.

Fig. 8 shows the normalized charge density distribution on

the strip. For the case w < d, a relatively small dielectric
constant C4 < C2 gives a weak charge density on the strip, while

for the case of w > d, a relatively large e4 > E2 gives the same

result. Therefore, the charge density on the strip conductor can

be controlled by the embedded dielectric constant :4. A weak

charge density associates with low loss of the stripline.

Fig. 9(a) and (b) show the characteristic impedance and

the effective dielectric constant versus the normalized width

o

Element number on strip conductor

Fig. 8. Normalized charge density dktribution on strip condnctor.

d/b of the embedded dielectric, with dielectric constant C4 as

parameter. These results demonstrate that either when w <d,

or when w > d, the characteristics are almost flat, while for

d close to w, the characteristics vary sharply. This is due
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Fig. 9. (a) Characteristic impedance and (b) effective dielectric constant

versus normalized width d/b of embedded dielectric, with dielectric constant

:4 as parameter.

to the fact that when d approaches w, the presence of the

embedded dielectric strongly affects the charge density on the

strip conductor.

Fig. 10(a) and (b) show the characteristic impedance and

the effective dielectric constant versus the normalized depth

h/b of the embedded dielectric with dielectric constant E4 as

parameter.

It took about 10 seconds of CPU time to calculate one set of

the characteristic data on a workstation SUN SPARCstation 2.

IV. DISCUSSIONS ON p-BEM

It should be noted that the formulation of the boundary

integral equations in Section II does not require that the
dielectric ridge be rectangular, though we used the rectangular

structure as a model. Indeed, we have proved the partial-

boundary integral for a general configuration in the Appendix,

so the formulation can be applied to an arbitrary cross-

sectional dielectric ridge, and the p-BEM can be employed

for the analysis of such structure.

As an extension to the boundary integral equation (BIE)

technique, the p-BEM provides a mean of formulating the

BIE’s and selecting the Green’s function. The discretization

of the formulated BIEs is done in a similar fashion as with the

BEM. The p-BEM can also be considered as an extension of

the BEM from the point of view of introducing the concept of

the equivalent charge density and using the Green’s function
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Fig. 10. (a) Characteristic impedance and (b) effective dielectric constant

versus normalized depth h/b of embedded dielectric, with dielectric constant

54 as parameter.

of a structure related to the original one. The most important

merit of the p-BEM is that it provides a straight forward

and optimum approach to formulate the BIE’s in a boundary

value problem, the BIE’s being formulated only on the partial-

boundaries. This point is particularly useful in the analysis

of striplines with arbitrary cross-sectional dielectric in multi-

layered media. The comparison between the p-BEM and the

BEM is given in Table I.

V. CONCLUSION

In this paper, a new method of analysis called the partial-

boundary element method (p-BEM), has been proposed for the
analysis of striplines with arbitrary cross-sectional dielectric

in multi-layered media. In the p-BEM, the boundary integral

equations can be formulated only on the surfaces of the strip

conductor(s) and the boundaries of the arbitrary cross-sectional

dielectric. The merit of this method is that the number of

boundaries to treat is small compared with the conventional

bounday integral equation methods such as the BEM in

which the Green’s function in free space is usually employed.

Striplines: (1) with a rectangular dielectric ridge and (2) with

an embedded rectangular dielectric in multi-layered media are

characterized in this paper as applications of the p-BEM. The

numerical results present many significant aspects of these

lines, and show the effectiveness of the p-BEM.
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TABLE I
COMPARISONBETWEEN BEM AND P-BEM

Comparison Term
I

B)3M[61 p-BEM

-
formulation of

boundary integral I complicated I straight forward

boundary variables I potential, boundary I
equivalent bounday

used in formulation
density distribution

charge density or both
nnlv

boundary discretization
using interpolate using interpolate

function function

treatment of sinmkaritv necessaw necessarf

appticabitity to

boondary value I wide I comparatively wtde

appticabflfty to multi-
simple

media [i.e. multi- complicated
(by selecting an

boundaries) problem
appropriate Green’s

function)

extension to 3-

dbnensional DrOblem I
possible and easy 1. possible and easy

, K

extension to fidl wave possible and possible but may lx

analvsis compmativelv easy difficult

~ when selecting Green’s function in free-space, the

identity of PBEM
pBEM is sirk to the indirect BEM, b& builds

up the boundav internal equations in a more

W&ight forward &Iy. -

APPENDIX

DERIVATION OF THE PARTIAL-BOUNDARY INTEGRAL

Consider a two-dimensional static electric boundary value

problem as shown in Fig. A-1. The problem consists of one

inner conductor with an applied voltage V. and three dielectric

regions with electric parameters Si(i = 1, 2, 3) surrounded by

shield conductor as seen in Fig. A-1. The inner conductor

is denoted by a closed curve 170, and the three regions are

denoted S~(i = 1, 2, 3), surrounded respectively by three

closed curves 17~(i = 1, 2, 3) in the xy plane, respectively.

The dielectric materials involved in this structure are assumed

lossless and isotropic, and the inner and outer conductors are

perfectly conducting.

Denoting the potentials for the static electric field in the

three regions by & (z, y) (i = 1, 2, 3), we have Laplace’s
equation as follows:

Vz#i(x,y) = o, (z)y) E l%, i= I,2,3, (Al)

where 72 = 82/8x2 + t12/8y2.

To solve for the potentials in each region, the boundary
integral equation technique is useful but a Green’s function

that satisfies all boundary conditions in the structure in Fig.

A-1 is difficult to find. To avoid the difficulty, let us consider

another Green’s function that satisfies all boundary conditions

not in the structure in Fig. A-1 but in a structure related to it

as shown in Fig. A-2. We assume that this Green’s function is

easier to find than the original one. The relevant structure, as

Fig. A-1. Two-dimensional boundary problem of static electric field in three
dklectric regions.

Fig. A-2. An associated two-dimensional boundary problem of static electric

field, with cz replaced by 63.

illustrated in Fig. A-2, is made up by replacing the ~Z dielectric

regions S2 with 53 dielectric region, and removing the inner

conductor in Fig. A-1.

In Fig. A-2, assuming that the Green’s functions due to a

line charge located at an arbitrary point (xo, yo) in the region

S2 or S3 is denoted as G13(x, y) in region SI and G33(x, y)

in region S2 and S3, respectively, then we have

V2G13(X, ~1~(), yo) =0, (%, y) c s,, (A.2)

V2G33(X, y\ ZO, yO) = – $~(x – xo, Y – Yo)>

(x, y) c S3 or S2. (A.3)

These Green’s functions G13 and G33 are assumed to satisfy

all boundary conditions in the relevant structure in Fig. A-

2. Thus we have the following boundary conditions for the

potential functions 41 (z, y), 42 (x, Y) and 43(x, Y) and the

Green’s functions G13 and G33:

43 = o, Orl r3,

G33 = O, on r3.

(A.4.1)

(A.4.2)

(A.4.3)

(A.4.4)

(A.5.1)

(A.5.2)
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Applying Green’s second integral theorem

I
(~V’G - GV2q5) ds =

!( )
d~ - G~ d17

s
r

to region S1, we have

/
(@lV2GM - G13V2411) dsl

SI

H

8G13——
)

$1x - G13~ dr.
rl

Substituting (A. 1) and (A.2) into this equation gives

!(

8G13
—cl dlX-G13~

)
dI’ = O.

rl

Working similar way with region S2, we have

/
($2 V2G33 - G33V2@Z) ds

S2

-1 (

t?G33
—

)
#2~ -G33~ dr

rz

Combining (A. 10) and (A. 15) in regions S2 and S3, respec-

tively, we have

Defining m as

(A.8)

(A.9)

{=

8$3

‘&3 872 ‘
on I’.

~=
afbz ap3 ‘

‘3 % ‘E3~n’
on rz

(A.16)

(A.17)

(A.18)

we can then express the potentials in regions S2 and S3 simply

as follows:

~2>3 =
!

CTG33 dI’.
r. +rz

(A.19)

On the other hand, to find the potential function in region S1,
and substituting (A. 1) and (A.3) into this equation gives the line charge (z., go) must be moved into the region. When

N 8G33

)

the source is at (z., go) in region S1, we have
— E3 d2K -G33~ dr

rz V2G11(Z, YIZO, VO) = ‘#$ – $0, g – !/0),

{

_ 42> ($O)!/O) ~ 5’2—

o, ($o, yo) g s’”
(A.1O) (x, y) ● s,, (A.20)

In region S3, we have
V2G31(3, Vlzo, go) = O, (X, y) c S3. (A.21)

I
(d3V2G33 - G33V2$3) ds

Applying Green’s second integral theorem to the region SI

and using the boundary conditions for G11 and G31 as shown

S3 in (A.5) for G13 and G33, and following the procedures used

-! (r, 43%

8$3
—

)

– G33Z dI’, (All)

3

where 17~ = r3 – 171 – r2 – 170. Expanding the right-hand

term of this equation as

i,=i,-kl-i,-io
(A.12)

and substituting (A.4), (A.5) and (A.8) into (A. 12) gives

~,=t) ~l=o> (A.13)

and

+

8G33
$$3~ dr = Vo

/

tlG33
—dr=o

r, an
(A.14)

rO

because no net electric flux remains in the region enclosed

by ro.

Therefore (A. 11) can be rewritten as

{

843
G33 ~

!(

8G33 843
— E3

)
dr+&3 g$3X –G33Z dr

rO

{

= 43) (~o>Yo) ~ s:’
o, (Zo, yo) @S3”

(A.15)

previously to the region S3, we can ge~

/( a#2
+ )843 dr

G31 E3K –E3K (A.22)
r2

We have

G31 = G13, (A.23)

from the symmetry of Green’s functions between the source

point (ZO, yo) and the observing point (z, y). Using the
variable o defined in (A. 18), the potential in region S1 can

then be expressed as

#l= ! CJG13dI’. (A.24)
rO+rz

Now by putting together the integrals in (A. 19) and (A.24), we

can express the potential in each region in the two-dimensional

problem in Fig. A-1 in a unified way as

$=/ (TG dr. (A.25)
rO+rz

This integral for potentials is called the “partial-boundary

integral” in this paper, in contrast to the conventional boundary
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integral equation in which the integrals for the potential must

be taken over all boundaries in Fig. A-1.

The variable o defined in (A. 18) has units of charge density.

In some cases, it is just the true charge density. In general,

however, o is an equivalent charge density distribution on the

partial-boundary without physical significance and just defined

as in (A. 18). The true charge density on the conductor surface

170 can be obtained by simply multiplying o with a constant

associated with the dielectric constants.

We note that by following the above procedure, the partial-

boundary integral in (A.25) can easily be obtained for more

dielectric regions than in Fig. A-1. For example, we can

divide region 1 into two regions, provided the Green’s function

used in (A.25) satisfies the corresponding additional boimdary

conditions. -
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